10 research outputs found

    BBMRI-ERIC's contributions to research and knowledge exchange on COVID-19

    Get PDF
    During the COVID-19 pandemic, the European biobanking infrastructure is in a unique position to preserve valuable biological material complemented with detailed data for future research purposes. Biobanks can be either integrated into healthcare, where preservation of the biological material is a fork in clinical routine diagnostics and medical treatment processes or they can also host prospective cohorts or material related to clinical trials. The paper discussed objectives of BBMRI-ERIC, the European research infrastructure established to facilitate access to quality-defined biological materials and data for research purposes, with respect to the COVID-19 crisis: (a) to collect information on available European as well as non-European COVID-19-relevant biobanking resources in BBMRI-ERIC Directory and to facilitate access to these via BBMRI-ERIC Negotiator platform; (b) to help harmonizing guidelines on how data and biological material is to be collected to maximize utility for future research, including large-scale data processing in artificial intelligence, by participating in activities such as COVID-19 Host Genetics Initiative; (c) to minimize risks for all involved parties dealing with (potentially) infectious material by developing recommendations and guidelines; (d) to provide a European-wide platform of exchange in relation to ethical, legal, and societal issues (ELSI) specific to the collection of biological material and data during the COVID-19 pandemic

    Enhancing reuse of data and biological material in medical research : from FAIR to FAIR-Health

    Get PDF
    The known challenge of underutilization of data and biological material from biorepositories as potential resources formedical research has been the focus of discussion for over a decade. Recently developed guidelines for improved data availability and reusability—entitled FAIR Principles (Findability, Accessibility, Interoperability, and Reusability)—are likely to address only parts of the problem. In this article,we argue that biologicalmaterial and data should be viewed as a unified resource. This approach would facilitate access to complete provenance information, which is a prerequisite for reproducibility and meaningful integration of the data. A unified view also allows for optimization of long-term storage strategies, as demonstrated in the case of biobanks.Wepropose an extension of the FAIR Principles to include the following additional components: (1) quality aspects related to research reproducibility and meaningful reuse of the data, (2) incentives to stimulate effective enrichment of data sets and biological material collections and its reuse on all levels, and (3) privacy-respecting approaches for working with the human material and data. These FAIR-Health principles should then be applied to both the biological material and data. We also propose the development of common guidelines for cloud architectures, due to the unprecedented growth of volume and breadth of medical data generation, as well as the associated need to process the data efficiently.peer-reviewe

    B-Cell Activating Factor as a Cancer Biomarker and Its Implications in Cancer-Related Cachexia

    Get PDF
    B-cell activating factor (BAFF) is a cytokine and adipokine of the TNF ligand superfamily. The main biological function of BAFF in maintaining the maturation of B-cells to plasma cells has recently made it a target of the first FDA-approved selective BAFF antibody, belimumab, for the therapy of systemic lupus erythematosus. Concomitantly, the role of BAFF in cancer has been a subject of research since its discovery. Here we review BAFF as a biomarker of malignant disease activity and prognostic factor in B-cell derived malignancies such as multiple myeloma. Moreover, anti-BAFF therapy seems to be a promising approach in treatment of B-cell derived leukemias/lymphomas. In nonhematologic solid tumors, BAFF may contribute to cancer progression by mechanisms both dependent on and independent of BAFF’s proinflammatory role. We also describe ongoing research into the pathophysiological link between BAFF and cancer-related cachexia. BAFF has been shown to contribute to inflammation and insulin resistance which are known to worsen cancer cachexia syndrome. Taking all the above together, BAFF is emerging as a biomarker of several malignancies and a possible hallmark of cancer cachexia

    Preface

    No full text
    corecore